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FREE BOUNDARY CONTROL OF BROWNIAN MOTION
AND A RELATED OPTIMAL STOPPING PROBLEM

Michael I. Taksar*

Department of Statistics
Florida State University
Tallahassee, FL 32306

1. We consider a controlled stochastic linear system

Zs = x + Xs- t +R -Lst. (1)

Here X is a (u,a 2)-Brownian motion and R and L are the control functionals,

which are increasing and adapted to the a-field generated by the process X.

For the policy S = (L,R) the expected cost takes the form

T ,e(tds+T -Y s-t t
Ks(x,t) = E{fh(z sS)e-Y(S-t)ds + e (st) dLs- t

t t

T -y(s-t) (2)
+r f e dRs t•

t

Here h, t and r stand for holding cost and unit cost of displacement to the

left and to the right respectively, and y > 0 is the discount factor. Our

objective is to characterize the optimal cost (the value function)

V*(x,t) = max Ks(Xt) (3)
S

and to describe the optimal policy S* = (L*,R*) for which V* = KS*. The

function V satisfies the Hamilton-Jacobi-Bellman equation (cf, [2)

0 = min(xa V t) + rV(x,t) - yV(x,t) + h(x,t),at

DV(x,t) + r, -DV(x,t) +
(4)

0 = V(x,T),

where D andax

1' 2  a2  a (5)

Our main technical assumptions are similar to the ones in [2]. We assume that

*Research supported by the Air Force Office of Scientific Research under

Grant Number F49620-85-C-0007.
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T < co (6)

h(x,t) is a nonnegative function such that there exists constants mn and

0 c SC, such that for every x, x', t, t

cIxIm - C -- h (x, t) :5 C(1+Ix I m)

jh(x,t) -h(x',t)j !5 C(l+lxlin-l+Ixllm-l) Ix - x-1,
(7)

lh(x,t) -h(x,t')j i5 C(l+IxIm) It - t'I,

0 5 -i- (x,t) :5 C(l+Ixjq) , q =(m-2).

ax

Theorem 1. Under the assumption (6), (7), there exists a unique solution V*

to the equation (4). This solution is the value function (3) of the control

problem (1) , (2).

There exists an optimal policy S* = (L*,R*) for which V* =Ks~ if

x* (t) =min{x: DV(x,t) =Z

x*(t) =maxfxz DV(x,t) =-r}

then for Z* given by (1)5

X* (x) SZ* !5 x* (S) (8)2 s 1

and

T

f < is dL*_t = 0 (9)

T

f Z > x*(s) dR St = 0.

The above theorem shows that the optimal control consists of reflecting of the

control process Z* from time-dependent (a' priori unknown) boundary.

Let V = {(x,t): x*(t)!5x sx*(t)1and let W =DV(x,t). By formally differen-

tiating (4) we get
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IN (x,t) + rW(x,t) -YW(x t) + I(x,t .3tI(

if (x,t) 4 P,

W(x,t) r, for all x 6 IR, 0 t t II

W(x,t) ? -e. for all x E IR, 0 t T, 121

W(x,T) = 0. (13)

where all equalities and inequalities are understood in the sense of generalized

function.

Assume that H(O,t) = 0, i.e. 0 = argmin h(x,t). Consider the following

minnax problem (game of two persons)

TAOAT
W(x,t) = sup inf E{f e- (st)H(x+X )ds

t t(14)

+ e -Y(T-t) 1 - re-Y(-t)i1T<TI< r e ]<Tla<r,

where sup is taken over all stopping times a z t such that x + X < 0 and inf
a-t

is taken over all stopping times T - t such that x + X > 0.

Theorem 2. The optimal stopping game described above has value that is the

right hand side of (14) does not change if sup inf is replaced by if sup. The value

of the game W satisfies (10) - (13) and it relates to the value function V by

W = DV.

2. Suppose h does not depend on t and we consider an infinite horizon optimiza-

tion problem

Vx) = su -ysh(Z) dsRE E(f e hZ ) d

+ s re- dR + f Ze-Y'dL }
0 0

where Z is given by (1) with t = 0.5
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The Hamilton-Jacobi-Bellman equation for the value function V given by

(15) reduces to an ordinary differential equation with gradient constrains

0 = min{rV(x) - yV(x) + h(x), V'(x) + r,

(16
- v' (x) }

In case of infinite horizon control, we can loosen the assumption on h, namely
C1

we assume that h is a nonnegative convex C function and

Ih'(x)I - as Ixl- . (17)

Theorem 3. Assume that (17) holds and r, > 0. Then there exists a unique

solution V*(x) to (16). There exists a unique optimal policy R*, L*. If

dV* dV*
a = inf{x:-(x) > -r} and b = sup {x:r (x) < I-) then for all t > 0

dxx

a s Z* b

where 2 = x + Xt  R* L*. Moreover
t t t t

f 1"*9a * = f-z b dL* = 0.
0 t t 0 t t

The above theorem shows that the optimal control in the infinite horizon problem

consists of keeping the controlled process Z* inside the interval [a,b] reflecting

it at the boundaries.

We want to establish the correspondence between optimal control problems

and game of optimal stopping of two persons. For simplicity, we assume that h

attains its minimum at point 0.

Consider an optimal stopping game of two persons.

Aa

W(x) = sup inf E{fe Yth(x+X )dt
T 0

(18)

+ e-YTI T-re - YTI

R A A J L 1 Al 11iiII ,1110 1 WR IU4



where sup is taken over all stopping times a such that x + X > 0 and inf isa

taken over all stopping times T such that x + X < 0.

Theorem 4. The quantity in the right hand side of (18) does not change if

sup inf is changed to inf sup. The value of the game W given by (18) is equal
OpT T C

to the derivative of V* given by (16). The optimal policies a* and T* in (18)

are given by

c* = infft: x+X t-b}

T* = infft: x+X t-a}

!,, where a and b are the same as in the theorem 3.

Similar results were obtained in [7] for the problem with average (per

unit of time) criterion.

',
4.ii

4.
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